ValueError: Shape of passed values is X, indices imply Y

avatar
Borislav Hadzhiev

Last updated: Apr 11, 2024
5 min

banner

# Table of Contents

  1. ValueError: Shape of passed values is X, indices imply Y
  2. Solve the error by passing the transposed array to pandas.DataFrame()
  3. Solving the error when you have duplicate index values
  4. If you got the error when using concat(), try using join() instead

# ValueError: Shape of passed values is X, indices imply Y

The Pandas "ValueError: Shape of passed values is X, indices imply Y" most commonly occurs when the shape of the passed values to pandas.DataFrame doesn't match the shape of the indices (or columns).

To solve the error, make sure the shape of the data matches the columns array.

Here is an example of how the error occurs.

main.py
import pandas as pd import numpy as np arr = np.array([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12] ]) print(arr.shape) # ๐Ÿ‘‰๏ธ (3, 4) df = pd.DataFrame(arr, columns=['A', 'B', 'C']) # ValueError: Shape of passed values is (3, 4), indices imply (3, 3) print(df)

value error shape of passed values is indices imply

The NumPy array has a shape of (3, 4). In other words, 3 rows and 4 columns.

However, when instantiating the pandas.DataFrame class, we only specified 3 column names.

The mismatch between the number of the columns in the array and the number of the specified columns caused the error.

As shown in the code sample, you can use the ndarray.shape() method to get a tuple of the array's dimensions.

One way to solve the error is to specify exactly as many columns as the array has when constructing the DataFrame.

main.py
import pandas as pd import numpy as np arr = np.array([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12] ]) print(arr.shape) # ๐Ÿ‘‰๏ธ (3, 4) df = pd.DataFrame(arr, columns=['A', 'B', 'C', 'D']) # A B C D # 0 1 2 3 4 # 1 5 6 7 8 # 2 9 10 11 12 print(df)

specify correct number of columns

The code for this article is available on GitHub

The array has 4 columns, so we passed 4 column names when instantiating the pandas.DataFrame class.

The columns argument is used to specify the column labels that are used for the resulting frame when the supplied data doesn't have them.

The argument defaults to RangeIndex(0, 1, 2, ..., n).

# Solve the error by passing the transposed array to pandas.DataFrame()

In some cases, you might want to pass the transposed version of the array to pandas.DataFrame() class to solve the error.

main.py
import pandas as pd import numpy as np arr = np.array([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12] ]) print(arr.shape) # ๐Ÿ‘‰๏ธ (3, 4) print('-' * 50) # [[ 1 5 9] # [ 2 6 10] # [ 3 7 11] # [ 4 8 12]] print(arr.T) print('-' * 50) print(arr.T.shape) # ๐Ÿ‘‰๏ธ (4, 3) df = pd.DataFrame(arr.T, columns=['A', 'B', 'C']) print('-' * 50) # A B C # 0 1 5 9 # 1 2 6 10 # 2 3 7 11 # 3 4 8 12 print(df)
The code for this article is available on GitHub

The NumPy array in the example has 3 rows and 4 columns.

However, notice that we only specified 3 columns when calling pandas.DataFrame().

We did this by getting a view of the transposed array with ndarray.T.

Using the attribute is the same as calling the numpy.transpose() method.

The method returns an array with the axes transposed.

# Solving the error when you have duplicate index values

The error is also raised when you have duplicate index values in your DataFrame or Series.

YOu can use the index.is_unique attribute to check if the index has unique values only.

main.py
import pandas as pd import numpy as np df = pd.DataFrame( np.array([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12] ]), columns=['A', 'B', 'C', 'D'], index=[0, 1, 2] ) # ๐Ÿ‘‡๏ธ Check if index is unique print(df.index.is_unique) # ๐Ÿ‘‰๏ธ True series = pd.Series( [13, 14, 15], name='ser', index=[0, 1, 2] ) # ๐Ÿ‘‡๏ธ Check if index is unique print(series.index.is_unique) # ๐Ÿ‘‰๏ธ True # A B C D ser # 0 1 2 3 4 13 # 1 5 6 7 8 14 # 2 9 10 11 12 15 print(pd.concat([df, series], axis=1))
The code for this article is available on GitHub

The index.is_unique attribute will return False if your index has duplicate values.

main.py
import pandas as pd import numpy as np idx = pd.Index([1, 3, 3, 5]) print(idx.is_unique) # ๐Ÿ‘‰๏ธ False

If you have duplicate values, use the DataFrame.drop_duplicates method to remove them.

main.py
import pandas as pd import numpy as np df = pd.DataFrame( np.array([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12] ]), columns=['A', 'B', 'C', 'D'], index=[0, 1, 2] ) # remove duplicates in place df.drop_duplicates(inplace=True) series = pd.Series( [13, 14, 15], name='ser', index=[0, 1, 2] ) # remove duplicates in place series.drop_duplicates(inplace=True) # A B C D ser # 0 1 2 3 4 13 # 1 5 6 7 8 14 # 2 9 10 11 12 15 print(pd.concat([df, series], axis=1))

The DataFrame.drop_duplicates() method removes the duplicate rows from the DataFrame.

The method mutated the original DataFrame because we set the inplace argument to True.

If the error persists, try to use the DataFrame.reset_index method.

main.py
import pandas as pd import numpy as np df = pd.DataFrame( np.array([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12] ]), columns=['A', 'B', 'C', 'D'], index=[0, 1, 2] ) # df.drop_duplicates(inplace=True) df.reset_index(drop=True, inplace=True) series = pd.Series( [13, 14, 15], name='ser', index=[0, 1, 2] ) series.reset_index(drop=True, inplace=True) # A B C D ser # 0 1 2 3 4 13 # 1 5 6 7 8 14 # 2 9 10 11 12 15 print(pd.concat([df, series], axis=1))
The code for this article is available on GitHub

The DataFrame.reset_index() method resets the index of the DataFrame and uses the default one instead.

You can also remove the duplicate indices by using the DataFrame.index.duplicated() method.

main.py
import pandas as pd import numpy as np df = pd.DataFrame( np.array([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12] ]), columns=['A', 'B', 'C', 'D'], index=[0, 1, 2] ) df = df.loc[~df.index.duplicated()] series = pd.Series( [13, 14, 15], name='ser', index=[0, 1, 2] ) series = series.loc[~series.index.duplicated()] # A B C D ser # 0 1 2 3 4 13 # 1 5 6 7 8 14 # 2 9 10 11 12 15 print(pd.concat([df, series], axis=1))

The index.duplicated() method returns a boolean array that indicates the duplicate index values.

main.py
import pandas as pd import numpy as np idx = pd.Index([1, 3, 3, 5]) # ๐Ÿ‘‡๏ธ [False False True False] print(idx.duplicated())

The array stores True for each duplicate value.

The tilde ~ character is then used to get the non-duplicate records.

# If you got the error when using concat(), try using join() instead

If you got the error when using the DataFrame.concat method, try to use the DataFrame.join method instead.

main.py
import pandas as pd import numpy as np df = pd.DataFrame( np.array([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12] ]), columns=['A', 'B', 'C', 'D'], index=[0, 1, 2] ) series = pd.Series( [13, 14, 15], name='ser', index=[0, 1, 2] ) # A B C D ser # 0 1 2 3 4 13 # 1 5 6 7 8 14 # 2 9 10 11 12 15 print(df.join(series))
The code for this article is available on GitHub

The DataFrame.join() method joins the columns of a DataFrame with another DataFrame, either on an index or on a key column.

# Additional Resources

You can learn more about the related topics by checking out the following tutorials:

I wrote a book in which I share everything I know about how to become a better, more efficient programmer.
book cover
You can use the search field on my Home Page to filter through all of my articles.

Copyright ยฉ 2025 Borislav Hadzhiev