Interpolating NaN values in a NumPy Array in Python

avatar
Borislav Hadzhiev

Last updated: Apr 12, 2024
4 min

banner

# Table of Contents

  1. Interpolating NaN values in a NumPy Array in Python
  2. Interpolating NaN values in a NumPy Array using pandas

# Interpolating NaN values in a NumPy Array in Python

You can use the numpy.interp() method to interpolate the NaN values in a NumPy array.

The method performs one-dimensional linear interpolation for monotonically increasing sample points.

main.py
import numpy as np def interpolate_nan(array_like): array = array_like.copy() nans = np.isnan(array) def get_x(a): return a.nonzero()[0] array[nans] = np.interp(get_x(nans), get_x(~nans), array[~nans]) return array # ๐Ÿ‘‡๏ธ [1. 1. 1.5 2. 2. 2.5 3. 3. 3. ] print( interpolate_nan( np.array([1, 1, np.NaN, 2, 2, np.NaN, 3, 3, np.NaN]) ) )

interpolate nan values in numpy array in python

The code for this article is available on GitHub

The interpolate_nan() function takes a NumPy array as a parameter and replaces the NaN values in the array with the linearly interpolated values.

You can also use a more manual and verbose approach to interpolate the NaN values in a NumPy array.

main.py
import numpy as np def interpolate_nan(array_like): array = array_like.copy() isnan_array = ~np.isnan(array) xp = isnan_array.ravel().nonzero()[0] fp = array[~np.isnan(array)] x = np.isnan(array).ravel().nonzero()[0] array[np.isnan(array)] = np.interp(x, xp, fp) return array # ๐Ÿ‘‡๏ธ [1. 1. 1.5 2. 2. 2.5 3. 3. 3. ] print( interpolate_nan( np.array([1, 1, np.NaN, 2, 2, np.NaN, 3, 3, np.NaN]) ) )

interpolate nan values in numpy array

The code for this article is available on GitHub

The function takes a NumPy array as a parameter and replaces the NaN values in the array with the linearly interpolated values.

The numpy.interp() method performs one-dimensional linear interpolation for monotonically increasing sample points.

The method returns the one-dimensional linear interpolant with the given discrete data points (xp, fp), evaluated at x.

main.py
array[np.isnan(array)] = np.interp(x, xp, fp)

The x argument is an array-like object that contains the x-coordinates at which to evaluate the interpolated values.

The x array contains the indices of the np.NaN values in the input array.

main.py
# ๐Ÿ‘‡๏ธ the input array # np.array([1, 1, np.NaN, 2, 2, np.NaN, 3, 3, np.NaN]) x = np.isnan(array).ravel().nonzero()[0] print(x) # [2 5 8]

The xp argument stores the indices of the non-NaN values in the array.

The argument represents the x-coordinates of the data points.

main.py
xp = isnan_array.ravel().nonzero()[0] print(xp) # ๐Ÿ‘‰๏ธ [0 1 3 4 6 7]

The fp argument represents the y-coordinates of the data points and is the same length as xp.

main.py
fp = array[~np.isnan(array)] print(fp) # ๐Ÿ‘‰๏ธ [1. 1. 2. 2. 3. 3.]

# Interpolating NaN values in a NumPy Array using pandas

You can also use the Series.interpolate method from pandas to interpolate the NaN values in a NumPy array.

First, make sure that you have the pandas module installed.

shell
pip install numpy pandas # or with pip3 pip3 install numpy pandas

Now import and use the module as follows.

main.py
import numpy as np import pandas as pd arr = np.array([1, 1, np.NaN, 2, 2, np.NaN, 3, 3, np.NaN]) # ๐Ÿ‘‡๏ธ [1.0, 1.0, 1.5, 2.0, 2.0, 2.5, 3.0, 3.0, 3.0] print(pd.Series(arr).interpolate().tolist())

interpolate nan values in numpy array

The code for this article is available on GitHub

We first used the pandas.Series() constructor to convert the NumPy array to a Series.

main.py
import numpy as np import pandas as pd arr = np.array([1, 1, np.NaN, 2, 2, np.NaN, 3, 3, np.NaN]) # 0 1.0 # 1 1.0 # 2 NaN # 3 2.0 # 4 2.0 # 5 NaN # 6 3.0 # 7 3.0 # 8 NaN # dtype: float64 print(pd.Series(arr))

Series objects have an interpolate() method that fills NaN values using an interpolation method.

main.py
import numpy as np import pandas as pd arr = np.array([1, 1, np.NaN, 2, 2, np.NaN, 3, 3, np.NaN]) # ๐Ÿ‘‡๏ธ [1.0, 1.0, 1.5, 2.0, 2.0, 2.5, 3.0, 3.0, 3.0] print(pd.Series(arr).interpolate().tolist())

The method returns a Series, interpolated at some or all NaN values.

The last step is to use the Series.tolist() method to convert the Series to a list object.

You can access the values attribute on the result to get an array instead of a list.

main.py
import numpy as np import pandas as pd arr = np.array([1, 1, np.NaN, 2, 2, np.NaN, 3, 3, np.NaN]) # ๐Ÿ‘‡๏ธ [1. 1. 1.5 2. 2. 2.5 3. 3. 3. ] print(pd.Series(arr).interpolate().values)
The code for this article is available on GitHub

The Series.values attribute returns the Series as an ndarray or an ndarray-like object (depending on the dtype).

# Additional Resources

You can learn more about the related topics by checking out the following tutorials:

I wrote a book in which I share everything I know about how to become a better, more efficient programmer.
book cover
You can use the search field on my Home Page to filter through all of my articles.

Copyright ยฉ 2025 Borislav Hadzhiev